Enhancement, evaluation and implementation of a load forecasting method
نویسندگان
چکیده
منابع مشابه
Short-term Load Forecasting Method
Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...
متن کاملImplementation of Neural Network Based Electricity Load Forecasting Myint
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are dec...
متن کاملImplementation of Neural Network Based Electricity Load Forecasting
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are dec...
متن کاملA Bayesian Combination Method for Short Term Load Forecasting
This paper presents the Bayesian Combined Predictor (BCP), a probabilistically motivated predictor for Short Term Load Forecasting (STLF) based on the combination of an artificial neural network (ANN) predictor and two linear regression (LR) predictors. The method is applied to STLF for the Greek Public Power Corporation dispatching center of the island of Crete, using 1994 data, and daily load...
متن کاملLoad Forecasting with Support Vector Machines and Semi-parametric Method
A new approach to short-term electrical load forecasting is investigated in this paper. As electrical load data are highly non-linear in nature, in the proposed approach, we first separate out the linear and the non-linear parts, and then forecast using the non-linear part only. Semi-parametric spectral estimation method is used to decompose a load data signal into a harmonic linear signal mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Association of Arab Universities for Basic and Applied Sciences
سال: 2012
ISSN: 1815-3852
DOI: 10.1016/j.jaubas.2012.02.001